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Abstract
Systems for assessing and tutoring reading skills place unique
requirements on underlying ASR technologies. Most responses
to a “read out loud” task can be handled with a low perplexity
language model, but the educational setting of the task calls for
diagnostic measures beyond plain accuracy. Pearson developed
an automatic assessment of oral reading fluency that was admin-
istered in the field to a large, diverse sample of American adults.
Traditional N-gram methods for language modeling are not op-
timal for the special domain of reading tests because N-grams
need too much data and do not produce as accurate recognition.
An efficient rule-based language model implemented a set of
linguistic rules learned from an archival body of transcriptions,
using only the text of the new passage and no passage-specific
training data. Results from operational data indicate that this
rule-based language model can improve the accuracy of test re-
sults and produce useful diagnostic information.

1. Introduction
The U.S. Government’s National Center for Education Statis-
tics commissioned a reading fluency assessment as part of the
2003 NAAL (National Assessment of Adult Literacy) called
the Fluency Addition to NAAL, in which each respondent read
aloud from lists and passages of text. We focus here on the
passages. All oral reading responses were digitally recorded
and subsequently analyzed for measures of accuracy and flu-
ency. For the 2003 NAAL project, 181,420 response recordings
were collected. To expedite the scoring of these responses and
to extract additional information from the responses that human
raters cannot provide, technology from Ordinate Corporation
(now the Knowledge Technologies group of Pearson) was used
to automate and augment the analysis of the oral readings.

The evidence that Pearson’s automatic scoring of reading
accuracy is reliable and valid was presented in [1]. This paper
presents the methods for building suitable language models for
automatic speech recognition (ASR) used in scoring a person’s
skill in reading passage aloud. A rule-based language model
(RBLM) was proposed to improve recognition accuracy on
read-aloud performances, using a set of linguistic rules learned
from a collection of transcriptions of other passages being read
aloud. Contrary to traditional methods, language models for
new passages can be built without transcriptions of readings of
the same passage. Furthermore, the rule-based recognition pro-
cess can yield extra diagnostic linguistic information about the
test takers’ reading habits that can be reported and analysed.

2. Task analysis
NAAL reading passages were relatively simple expository or
narrative texts of about 150-200 words in length. Each of the

18,142 adult respondents read aloud 2 out of 8 passages. There
has been previous work [2, 3] using ASR in reading passage. In
general a large number of transcriptions are required to build
suitable language models to ensure recognition accuracy. A
dedicated language model may be built for each passage to cap-
ture the stochastic language structure accurately. The require-
ment for a large number of transcriptions is a disadvantage be-
cause each time a set of new passages are introduced, many
spoken responses for each passage needs to be transcribed be-
fore language models can even be built. Therefore, one goal
of this research is to find a method to build suitable language
models for a new reading passage based only on the text of
the new passage without any passage-specific training data. In-
stead, information in existing transcriptions of other material
can be extracted and applied to new passages. It turns out that
these new rule-based language model improve recognition per-
formance, and consequently improve the accuracy of test re-
sults. Beyond guiding the recognition process, another goal of
the rule-based model development is to identify and aggregate
information about the fine structure of the reader’s performance.
For example, knowing the recognition path taken through one or
more rule-based language models should indicate which read-
ing skills have been mastered and which still need work.

For our specified passage-reading task, we know the exact
sentences test takers are expected to say. One of the scores, the
number of words read correctly, is measured based on the dif-
ference between what the test taker says and the expected text.
The smaller the difference, the better. This is the big difference
between the ASR task in passage reading and ASR in other ap-
plications, in which we usually only know that incoming speech
relates to a special knowledge domain (a constrained dictionary
and grammar). The traditional ASR methods for building and
applying language models are not optimal for the special do-
main of reading testing. In addition, significant numbers of test
takers are non-native speakers with low oral proficiency. Their
responses may not follow the English grammar and it is impor-
tant to have the ability to detect such errors.

3. The language models
In a bigram language model, only one previous word wi−1

will be used to estimate the likelihoods of the current word.
A trigram language model considers only previous two words
wi−1, wi−2. We introduce feasible methods that model much
longer sequential dependencies.

Suppose that the word string a speaker said is W =
w1, w2, ..., wn, wi ∈ V . V is used to denote a vocabulary.
Then a priori probability for this word string is

P (W) =

nY
i=1

P (wi|w1, ..., wi−1).
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Figure 1: A simplified example of the rule-based language model. The passage text is i won’t take that.

We hope that we know the value of P (wi|w1, ..., wi−1) af-
ter a speaker produces w1, w2, ..., wi−1. This value can help
us to recognize the next word. But there are too many argu-
ments in P (wi|w1, ..., wi−1) even for moderate values of i and
reasonable vocabulary size. It is impossible to estimate every
P (wi|w1, ..., wi−1) based on previous transcriptions. We need
to build a language model to estimate them. Suppose that the
language model we use is L, then the output likelihood of this
language model can be calculated as

P (W|L) =

nY
i=1

P (wi|w1, ..., wi−1,L).

The advantage of using the language model is that the proba-
bility that a speaker will choose his ith word does not explic-
itly depend on the entire history of all his previous words, but
depends on the equivalence classes ΦL(w1, ..., wi−1). A dif-
ferent language model determines how to choose the appropri-
ate equivalence classification and gives a method to estimate
P (wi|ΦL(w1, ..., wi−1)). Thus

P (W|L) =

nY
i=1

P (wi|ΦL(w1, ..., wi−1)).

When the word sequence is sufficiently long, the cross-entropy
H(W) of a language model on W can be simply approximated
as H(W) = −1/n·log2P (W), and then the preplexity of a
language model is the reciprocal of the geometric average prob-
ability P (W|L)1/n. The perplexity is a popular measure of a
text’s complexity within a language model and can be treated as
the effective branching factor. In passage reading, the perplex-
ity within a reasonable language model is usually very low.

4. The structure of the RBLM
To avoid collecting and transcribing many renditions for each
new passage, we build language models based on the transcrip-
tion of a fixed body of similar passages as read by people sim-
ilar to the target population of readers. The basic proposal is
that a simple direct graph needs to be built that has a path from
the first word in the reading passage to the last word. Different
direct arcs are required to represent the different classes of er-
rors made by the readers, such as skipping, repeating, inserting,

and substituting words. For each arc, a probability is assigned
to represent the chance that the arc will be chosen. We use a
knowledge-based approach, which includes a list of linguistic
rules, such as she may be substituted by he, a single noun may
be substituted by a plural noun, to represent some potential arcs.
The arc itself can remember which rule it stands for. If such
a graph represents many of the renditions encountered, then it
should be a useful language model.

We give a simple example to explain the idea. Suppose that
the passage text is just the four words i won’t take that, which is
also the expected sequence of words that a test taker will speak.
The test taker may keep silent or say i don’t know if he can’t
read this sentence. Also suppose that we have the following
linguistic rules in the knowledge base (how to elicit these rules
will be discussed in Section 5): won’t may be substituted by
don’t or want; take may be substituted by tell; that may be sub-
stituted by this; to may be inserted at the end of won’t; any word
in the answer choice may be skipped or repeated; mouth noise
(noted as #) or hesitation (noted as uh) may be inserted at the
end of any word or at the beginning or end of the sentence; ... .
With these assumptions, we can get a simplified RBLM shown
in Figure 1.

For any passage language model, we also have a leading
silence and tail silence (noted as %SIL), which stand for the
possible silent pause at the beginning or at the end of the sen-
tence. After applying all the rules, the null nodes can be deleted
that have only one parent and one child, and then a direct con-
nection between the parent and child can be given.

From Figure 1, we can see, for every language model, we
have a start null node and an end null node. Every arc from
the start null node can stand for a category, such as correct,
wrong, silence or i don’t know. The category information can
help us figure out which direction the test taker goes. For some
categories, it is possible to have multiple choices, such as other
answer choices and other don’t know. The test taker may speak
i’m sorry instead of i don’t know. The leading silence follows
every category except the silence category itself. If we want to
know the relative proportion of the different response choices or
don’t know, we can let the corresponding arcs remember which
choice they stand for. In the figure, we omitted some nodes of
hesitation and mouth noise to simplify the graph. Type 1 arc
stands for skipping any word. Type 2 arc stands for repeating



any word. Type 3 arc stands for skipping a phrase break. Type
4 arc stands for the situation that test taker will jump from any
place to the end of the passage (i.e. stop reading). This situation
happens quite often in passage-reading tests because of the time
constraint. Since we have the rules of skipping or repeating any
word, this language model can cover any response whose words
are in this model.

One advantage of this language model is that we can record
what’s really going on. If a test taker speaks i don’t take that, af-
ter matching to this language model to find the maximum likeli-
hood path, we can tell that the rule won’t is substituted by don’t
and such rule has been fired. Other situations, such as repeat-
ing a word, skipping a word, can be caught easily. During the
scoring process, we may take advantage of such information to
score them differently. For example, the score penalty for re-
peating a word could be treated as less than that for skipping a
word.

The RBLM essentially is a Markov chain. Every state in
the language model corresponds to the equivalence class of pre-
ceeding words as classified by the language model. The prob-
ability that a speaker will choose his ith word depends on a
certain state. Between that state and the start null node a path
that covers his previous words should exist.

5. Extracting linguistic rules
To extract linguistic rules, many transcriptions of spoken re-
sponses to various passages are required. Since using tagged
passages can give us the information about the linguistic struc-
tures of passages, we tag all the passage texts. It can be done
automatically using different tagging tools. The tag set we used
is the Penn Treebank Tag set [4]. We also add potential phrase
breaks in answers. The linguistic structure can give us flexibil-
ity to add rules that are more general. Some general rules that
can be figured out easily based on the tagged answer choices
are: NN (noun, singular or mass) becomes NNS (noun, plural);
VBZ (verb, 3rd person singular present) becomes VBP (verb,
non-3rd person singular present); and so on. These rules happen
quite frequently in the responses of non-native English speak-
ers.

5.1. Building rules

As the first step, the following four rules were put in our knowl-
edge base: any word can be substituted by any word with a
probability 0.0000001; any word can be inserted after any word
with a probability 0.0000001; any word can be skipped with a
probability 0.001; any word can be repeated with a probability
p = 0.001. Then a RBLM was built as discussed in Section 4.
For each transcription, we use the Viterbi algorithm [5] to find
the maximum likelihood path in the language model. This pro-
cess is similar to ASR decoding. Note that we assign a very low
probability to the garbage models (rules permitting any word
to be replaced by any word and any word to be inserted after
any word). They are the only rules that allow out-of-vocabulary
words to appear, and their probability is fixed to the lowest level
no matter how we update other probabilities. They will never
be fired unless there is no other choice. The garbage rules will
only be used during rules building process. When we build the
RBLM, they will be ignored. By collecting garbage model fir-
ing patterns, such as context and tags in the language model,
we can cluster similar cases and propose rules with the firing
frequencies for linguists to review. Starting from the most fre-
quent transcriptions, the most popular rules should be easy to

determine since there are usually only one or two rules used in
these transcriptions. On the other hand, test takers make the
same mistakes quite often. After the most frequent rules are
added to the knowledge base, linguists can more easily identify
other less frequent ones. To be easy to generalize to new pas-
sages, we should try to use the general rules (such as rules based
on tags) instead of using the context-dependent rules (such as
word substitutions).

By counting the rule-firing situations, word coverage can be
understood; i.e., the number of times that garbage models were
fired in a transcription divided by the total number of words in
the transcription, equal to one minus word coverage. Our goal is
to introduce reasonable rules to improve word coverage. After
every cycle, a few more rules may be added until no significant
improvement in word coverage is observed. After such a state
is reached, the rule building process can be finished.

5.2. The probabilities of rules

There is one problem in our procedure: we need to have the
probabilities of the rules that we are trying to estimate to figure
out the best path. Fortunately, the expectation-maximization al-
gorithm [6] can help us to overcome this problem. We can start
with a guess at the probabilities of rules (in our case, we assign
a small probability to rules), obtain better estimates, and then
put them back to run the program again, so that we can obtain
an even better estimate.

The probabilities for different rules are estimated using the
maximum likelihood method. The maximum likelihood param-
eter estimate could be obtained by counting. At the individual
passage level, for every node, there are several out arcs. If the
matched path for a transcription includes that node, we increase
the count by one for every out arc of that node. However, we
increase the fired count by one only for the out arc included in
that path. Others are unchanged. After all the transcriptions are
matched, the maximum likelihood probability for a rule is the
fired count divided by the visited count.

The above discussion is only based on the individual pas-
sage level. The rule can be generalized to the whole domain we
are interested in. Its probability is the sum of the fired counts for
that rule in any individual passage divided by the sum of the vis-
ited counts. It is possible that certain rules have different proba-
bilities when they are applied to the different passages. We can
distinguish this situation by using chi-squared test 1 to find out
if there is a statistically significant difference in the probabilities
between the general and individual levels. If not, we only keep
the probabilities for the general level. Otherwise, we also keep
the probabilities in the individual level that have significant dif-
ference. When we use a rule for a passage, we first check if
there is an individual-level probability for that rule. If yes, we
use that probability. Otherwise, we use the general level.

The whole process can be iterated several times using the
new estimated probabilities combined with some new rules.
This procedure essentially is an expectation-maximization al-
gorithm, so the final estimated probabilities should converge to
a local minimum.

Currently we treat hesitation and mouth noise as general
rules. We only distinguish three different kinds of hesitation
and mouth noise in the RBLM. They can be inserted at the be-
ginning of the passage, the end of the passage, or at the end of
any word.

1When the total number is less than 80, we use Fisher’s exact test.



6. Experimental results and analysis
From the 18,142 adult respondents, we randomly selected 2,703
test takers as our training set and 1,301 test takers as our test
set. Each test taker read 2 out of 8 potential passages. All the
passage responses in the training and test sets were transcribed.
Thus, there were about 677 transcribed responses for each po-
tential passage in the training set and about 325 in the test set.

Table 1 lists the percentage of out-of-vocabulary words in
the RBLM building process. We can see that it decreased very
quickly. In the final model, there are still around 1.5% out-of-
vocabulary words. Most of them are caused by wrong passage
readings, some unintelligible words, and partial sounds.

Step 0 1 2 3 Final
TrainingSet 16.8% 3.4% 1.7% 1.6% 1.47%
TestingSet 16.7% 3.6% 2.0% 1.9% 1.52%

Table 1: The percentage of out-of-vocabulary words in the train-
ing and test sets during different iteration steps.

Using the transcriptions in the training set, the final rules
and their probabilities were generated. We found that the fol-
lowing rules were used frequently by the test takers: might is
substituted by may with the probability 0.088; contraction for-
mat (such as she’s) becomes no contraction format with the
probability 0.073; VBZ (verb, 3rd person singular present) is
substituted by VB (verb, base form) with the probability 0.048;
NNS (noun, plural) is substituted by NN (noun, singular or
mass) with the probability 0.044; NN is substituted by NNS
with the probability 0.010; inserting mouth noise (#) at the be-
ginning and the end of the passage with the probability 0.296
and 0.090 respectively; the could be inserted in the middle of
a structure like IN JJ NNS with the probability 0.094; mouth
noise (#) could happen after every word with the probability
0.047; repeating two or three words happens more than three
times more often than skipping two or three words; any word
could be replaced by its partial words; and so on.

The final rule set was used to build RBLMs. The aver-
age perplexity for these models was 1.73. When standard bi-
gram language models were built for comparison, their average
perplexity was 2.87. In both cases, we used a non-native tri-
phone acoustic model to do the speech recognition. This acous-
tic model was trained on a widely representive sample of non-
native spoken materials collected by Pearson. None of the data
used in these LM experiments had been used for acoustic model
training. In the test set (the total number of words is 348,681),
we achieved word error rate (WER) 9.0% by using the RBLM,
compared to a WER 12.6% when using a passage-specific bi-
gram language model. This suggests that a non-specific rule-
based model extracted from 5600 reading performances pro-
vides the recognizer with more accurate information than a bi-
gram model based on around 677 reading performances on the
specific passage under study.

By taking advantage of the RBLM, for each passage read-
ing, Pearson provided rule-firing details to the National Center
for Educational Statistics for further analysis. By analyzing the
rule-firing situation in context, test takers’ reading errors includ-
ing real substitutions, omissions, insertions, self-corrections,
and reversals, etc. can be accurately obtained using automatic
methods.

It is well-known that the children’s speech is substantially
harder to be recognized than adults’ [7]. We tested the model

to a children’s oral reading dataset. A total of 164 elementary
school students (46 first graders, 62 third graders, and 56 fifth
graders) were recruited from different parts of the United States,
from a range of ethnic and linguistic backgrounds. Roughly half
of the students were male and half were female. Each student
took the grade-appropriate Benchmark test (3 passages) yield-
ing 492 responses. Each response was 90 seconds in length. All
the responses were transcribed. The rules learned from previous
adult data were used directly to build RBLMs. All the transcrip-
tions here plus some from similar source were used to build bi-
gram language models. The average number of transcriptions
for a bigram language model is 126. The average perplexty is
2.22 for RBLMs and 4.22 for bigram language models. WER
was 13.1% by using the RBLM, compared to a WER 26.1%
when using a passage-specific bigram language model.

This RBLM has also been successfully applied in a test of
oral English proficiency, Versant for English [8] that uses ASR
and other automatic techniques to score reading, elicited im-
mitations, and sentence construction tasks, again, without the
usual transcription requirement for new items.

7. Conclusions
We proposed an RBLM for reading recognition. This model
can be built by applying different linguistic rules to passage
texts. Our experimental results showed that the recognition per-
formance of the RBLM was significantly better than that of the
bigram language model in passage reading task. After building
enough general linguistic rules, the RBLM should be able to be
applied to other low perplexity recognition domains without the
requirement of transcriptions. Thus, it significantly reduces the
time and cost of human transcribers in developing automated
tests that score spoken performances. The RBLM opens the
possibility of automatically catching spoken grammar mistakes
and making diagnostic suggestions.
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